Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.357
Filtrar
1.
Heliyon ; 10(5): e27054, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562500

RESUMO

Breast cancer is among the cancer types with the highest numbers of new cases. The study of this disease from a microscopic perspective has been a prominent research topic. Previous studies have shown that microRNAs (miRNAs) are closely linked to chromosomal instability (CIN). Correctly predicting CIN status from miRNAs can help to improve the survival of breast cancer patients. In this study, a joint global and local interpretation method called GL_XGBoost is proposed for predicting CIN status in breast cancer. GL_XGBoost integrates the eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanation (SHAP) methods. XGBoost is used to predict CIN status from miRNA data, whereas SHAP is used to select miRNA features that have strong relationships with CIN. Furthermore, SHAP's rich visualization strategies enhance the interpretability of the entire model at the global and local levels. The performance of GL_XGBoost is validated on the TCGA-BRCA dataset, and it is shown to have an accuracy of 78.57% and an area under the curve value of 0.87. Rich visual analysis is used to explain the relationships between miRNAs and CIN status from different perspectives. Our study demonstrates an intuitive way of exploring the relationship between CIN and cancer from a microscopic perspective.

2.
Front Microbiol ; 15: 1379382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585689

RESUMO

The human gut microbiome plays a critical role in maintaining our health. Fluctuations in the diversity and structure of the gut microbiota have been implicated in the pathogenesis of several metabolic and inflammatory conditions. Dietary patterns, medication, smoking, alcohol consumption, and physical activity can all influence the abundance of different types of microbiota in the gut, which in turn can affect the health of individuals. Intestinal phages are an essential component of the gut microbiome, but most studies predominantly focus on the structure and dynamics of gut bacteria while neglecting the role of phages in shaping the gut microbiome. As bacteria-killing viruses, the distribution of bacteriophages in the intestine, their role in influencing the intestinal microbiota, and their mechanisms of action remain elusive. Herein, we present an overview of the current knowledge of gut phages, their lifestyles, identification, and potential impact on the gut microbiota.

3.
Immunol Invest ; : 1-22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622991

RESUMO

Osteoarthritis (OA) is now widely acknowledged as a low-grade inflammatory condition, in which the intrinsic immune system plays a significant role in its pathogenesis. While the involvement of macrophages and T cells in the development of OA has been extensively reviewed, recent research has provided mounting evidence supporting the crucial contribution of NK cells in both the initiation and advancement of OA. Accumulated evidence has emerged in recent years indicating that NK cells play a critical role in OA development and progression. This review will outline the ongoing understanding of the utility of NK cells in the etiology of OA, focusing on how NK cells interact with chondrocytes, synoviocytes, osteoclasts, and other immune cells to influence the course of OA disease.

4.
Anal Chem ; 96(15): 6079-6088, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563576

RESUMO

Metal ion homeostasis is imperative for normal functioning of the brain. Considering the close association between brain metal ions and various pathological processes in brain diseases, it becomes essential to track their dynamics in awake animals for accurate physiological insights. Although ion-selective microelectrodes (ISMEs) have demonstrated great advantage in recording ion signals in awake animals, their intrinsic potential drift impairs their accuracy in long-term in vivo analysis. This study addresses the challenge by integrating ISMEs with photoelectrochemical (PEC) sensing, presenting an excitation-detection separated PEC platform based on potential regulation of ISMEs. A flexible indium tin oxide (Flex-ITO) electrode, modified with MoS2 nanosheets and Au NPs, serves as the photoelectrode and is integrated with a micro-LED. The integrated photoelectrode is placed on the rat skull to remain unaffected by animal activity. The potential of ISME dependent on the concentration of target K+ serves as the modulator of the photocurrent signal of the photoelectrode. The proposed design allows deep brain detection while minimizing interference with neurons, thus enabling real-time monitoring of neurochemical signals in awake animals. It successfully monitors changes in extracellular K+ levels in the rat brain after exposure to PM2.5, presenting a valuable analytical tool for understanding the impact of environmental factors on the nervous system.


Assuntos
Técnicas Biossensoriais , Vigília , Animais , Ratos , Encéfalo , Microeletrodos , Técnicas Eletroquímicas
5.
J Colloid Interface Sci ; 666: 88-100, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583213

RESUMO

K-doped Mn-Ce solid solution catalysts were synthesized using a combination of coprecipitation and hydrothermal methods, demonstrating excellent performance in benzene oxidation. The catalyst K1Ce5Mn5 exhibited comparable activity to noble metal catalysts, achieving a 90 % benzene conversion at approximately 194 ℃. Durable tests under dry and moist conditions revealed that the catalyst could maintain its activity for 50 h at 218 ℃ and 236 ℃, respectively. Characterization results indicated that the catalyst's enhanced activity resulted from the weakened Mn-O bonding caused by the introduction of K+, facilitating the activation of oxygen and its involvement in the reaction. CeOx, the main crystalline phase of Mn-Ce solid solutions, provided abundant oxygen vacancies for capturing and activating oxygen molecules for the weakened Mn-O structures. This conclusion was further supported by partial density of state analysis from density functional theory computations, revealing that the introduction of K+ weakened the orbital hybridization of Mn3d and O2p. Finally, in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) studies on Ce5Mn5 and K1Ce5Mn5 catalysts suggested that the introduction of K+ promoted the conversion of adsorbed benzene. Furthermore, intermediate products were transformed more rapidly for K1Ce5Mn5 compared to Ce5Mn5.

6.
Adv Sci (Weinh) ; : e2307754, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605600

RESUMO

Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.

7.
Sci Total Environ ; : 172400, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631634

RESUMO

Ensuring agricultural security and preserving the health of wetland ecosystems are crucial concerns facing northeast China. However, the adverse effects of environmental pollution, especially nitrogen (N), caused by prolonged agricultural development on the health of marsh wetlands cannot be systematically recognized. To address this issue, an 18-year trial with four different levels of N application was carried out in a typical area of the Northeast region: 0, 6, 12, and 24 gN·m-2·a-1 (referred to as CK, N6, N12, and N24, respectively) to investigate changes in wetland ecological functioning. The results showed that long-term N input significantly enhanced soil N availability. High-level of N addition (N24) significantly reduced soil bacterial richness in October, while fungal diversity was significantly higher in June than in October for both control and N6 treatments. The main environmental factors affecting microorganisms in June were TN, NH4+, and EC, while bacterial and fungal communities were influenced by TN and Leaf Area Index (LAI), respectively, in October. It was found that the AN16S gene was significantly higher in June than in October, indicating that summer is the critical time for N removal in the wetland. N addition significantly reduced the abundance of the NIFH gene and decreased the N fixation potential of the wetland. In June, low and medium levels of N inputs promoted denitrification processes in the wetland and elevated the wetland N2O emission potential. The abundance of NARG, NIRK, and NOSZ genes decreased significantly in October compared to June, indicating a decrease in the wetland N2O emission potential. Additionally, it was observed that soil methanotrophs were positively affected by NH4+ and TN in October, thereby reducing the wetland CH4 emission potential. Our research provides a systematic understanding of the impact of agricultural N pollution on marsh wetlands, which can inform strategies to protect wetland health.

8.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632547

RESUMO

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Assuntos
Microbioma Gastrointestinal , Metilaminas , Hipertensão Arterial Pulmonar , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hipertensão Pulmonar Primária Familiar , Colina
9.
Arch Biochem Biophys ; 756: 110009, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642631

RESUMO

BACKGROUND: Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS: Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS: HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS: Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.

10.
Respir Med ; : 107643, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657739

RESUMO

BACKGROUND: Emerging evidence has shown that the blood urea nitrogen to serum albumin ratio (BAR) is associated with the severity and prognosis of heart failure. However, its role in idiopathic pulmonary arterial hypertension (IPAH) remains unclear. This study investigated the associations between BAR and functional status, echocardiographic findings, hemodynamics, and long-term outcomes among patients with IPAH. METHODS: This study included consecutive patients who underwent right heart catheterization (RHC) and were diagnosed with IPAH between January 2013 and January 2018 at Fuwai Hospital. The primary outcome was the worsening of clinical symptoms. Spearman correlation coefficients were used to evaluate the association between the BAR and established markers of IPAH severity. Receiver operating characteristic (ROC) curve analysis was used to determine BAR's optimal cut-off and predictive performance. Kaplan-Meier analysis and Cox proportional hazard models assessed the relationship between BAR and clinical worsening. RESULTS: A total of 340 patients with IPAH were included in this study. BAR correlated with well-validated variables that reflected the severity of IPAH, such as World Health Organization functional class, 6-min walk distance, N-terminal pro-brain natriuretic peptide (NT-proBNP) level, mixed venous oxygen saturation, and cardiac index. Kaplan-Meier curves indicated that patients with BAR>3.80 had a significantly higher clinical worsening rate (log-rank test, P < 0.001) than those with BAR≤3.80. Multivariate Cox analysis showed that BAR could independently predict clinical worsening [hazard ratio(HR):1.177, 95% confidence interval (CI):1.014-1.367, P=0.005]. In addition, BAR provided additional predictive value for the European Society of Cardiology (ESC)/European Respiratory Society (ERS) risk assessment score. CONCLUSIONS: BAR reflects disease severity and is independently associated with the prognosis of patients with IPAH.

11.
Chem Sci ; 15(13): 4824-4832, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550676

RESUMO

Epilepsy is considered one of the most prevalent neurological disorders, yet the precise mechanisms underlying its pathogenesis remain inadequately elucidated. Emerging evidence implicates endogenous sulfur dioxide (SO2) in the brain as playing a significant role in epilepsy and associated neuronal apoptosis. Consequently, tracking the dynamic fluctuations in the levels of SO2 and its derivatives (SO32-/HSO3-) provides valuable insights into the molecular mechanisms underlying epilepsy, with potential implications for its diagnosis and therapeutic intervention. Nonetheless, the absence of reversible in vivo detection tools constitutes a formidable obstacle in the real-time monitoring of SO2 dynamics in the brain. In response to this challenge, we propose a novel approach involving a photoelectrochemical (PEC) microsensor capable of reversibly detecting SO2. This microsensor leverages a reversibly recognizing dye for SO2 and upconversion nanoparticles as the modulator of the excitation source for the photoactive material, enabling modulation of the photocurrent by the target. The reversible output of PEC signals allows for the monitoring of SO2 levels in real time in the brains of epileptic mice. This study reveals the patterns of SO2 level changes during epilepsy and provides insights into the neuroprotective mechanism of exogenous SO2.

12.
Front Surg ; 11: 1335796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486795

RESUMO

Objectives: To evaluate the comparation of myocutaneous flap vs. skin flap in V-Y medial epicanthal fold reconstruction. Methods: The study, conducted from April 2017 to June 2022, involved two groups: group A, comprising 21 patients who underwent medial epicanthal fold restoration surgery using the V-Y advancement method with a skin flap, and group B, comprising 83 patients who underwent the same procedure, while with a myocutaneous flap for orbicularis oculi ring reconstruction. Intercanthal distances were measured preoperatively, recorded during preoperative and postoperative reviews, and assessed through a 4-point Likert satisfaction questionnaire. Results: A total of 104 patients were followed up for 6 months postoperatively. In group A, preoperative intercanthal distances ranged from 28.7 mm to 38.2 mm, increasing to 30.2 mm-40.6 mm postoperatively, with a mean increase of 3.0 mm (P < 0.05). In group B, preoperative distances ranged from 28.8 mm to 38.0 mm, increasing to 32.2 mm-41.5 mm postoperatively, with a mean increase of 3.9 mm (P < 0.05). Group B exhibited a higher overall satisfaction rate compared to group A. Conclusion: The myocutaneous flap V-Y procedure, employing the principle of orbicularis oculi ring reconstruction, achieves more stable postoperative results than the flap-only V-Y procedure. Consequently, it can be regarded as the preferred surgical technique.

13.
Opt Lett ; 49(6): 1413-1416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489413

RESUMO

Tunable optical filters at the chip scale play a crucial role in fulfilling the need for reconfigurability in channel routing, optical switching, and wavelength division multiplexing systems. In this Letter, we propose a tunable double notch filter on thin-film lithium niobate using dual microring architecture. This unique integrated filter is essential for complex photonic integrated circuits, along with multiple channels and various frequency spacing. With only one loaded voltage, the device demonstrates a wide frequency spacing tunability from 16.1 to 89.9 GHz by reversely tuning the resonances of the two microrings while the center wavelength between the two resonances remains unaltered. Moreover, by utilizing the pronounced electro-optic properties of lithium niobate associated with the tight light confined nanophotonic waveguides, the device demonstrates a spacing tunability of 0.82 GHz/V and a contrast of 10-16 dB. In addition, the device has an ultracompact footprint of 0.0248 mm2.

14.
Clin Transl Sci ; 17(3): e13751, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38450983

RESUMO

Inflammation contributes to development of idiopathic pulmonary arterial hypertension (IPAH), and tumor biomarkers can reflect inflammatory and immune status. We aimed to determine the value of tumor biomarkers in IPAH comprehensively. We enrolled 315 patients with IPAH retrospectively. Tumor biomarkers were correlated with established indicators of pulmonary hypertension severity. Multivariable Cox regression found that AFP (hazard ratio [HR]: 1.587, 95% confidence interval [CI]: 1.014-2.482, p = 0.043) and CA125 (HR: 2.018, 95% CI: 1.163-3.504, p = 0.013) could independently predict prognosis of IPAH. The changes of AFP over time were associated with prognosis of patients, each 1 ng/mL increase in AFP was associated with 5.4% increased risk of clinical worsening (HR: 1.054, 95% CI: 1.001-1.110, p = 0.046), enabling detection of disease progression. Moreover, beyond well-validated PH biomarkers, CA125 was still of prognostic value in the low-risk patients (HR: 1.014, 95% CI: 1.004-1.024, p = 0.004), allowing for more accurate risk stratification and prediction of disease outcomes. AFP and CA125 can serve for prognosis prediction, risk stratification, and dynamic monitor in patients with IPAH.


Assuntos
Biomarcadores Tumorais , alfa-Fetoproteínas , Humanos , Hipertensão Pulmonar Primária Familiar , Estudos Retrospectivos , Prognóstico
15.
Int J Pharm ; 655: 124028, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38518871

RESUMO

Ovarian cancer is a malignant tumor that seriously endangers the lives of women, with chemotherapy being the primary clinical treatment. However, chemotherapy encounters the problem of generating multidrug resistance (MDR), mainly due to drug efflux induced by P-glycoprotein (P-gp), which decreases intracellular accumulation of chemotherapeutic drugs. The drugs efflux mediated by P-gp requires adenosine triphosphate (ATP) hydrolysis to provide energy. Therefore, modulating energy metabolism pathways and inhibiting ATP production may be a potential strategy to reverse MDR. Herein, we developed a PTX-ATO-QUE nanoparticle (PAQNPs) based on a PLGA-PEG nanoplatform capable of loading the mitochondrial oxidative phosphorylation (OXPHOS) inhibitor atovaquone (ATO), the glycolysis inhibitor quercetin (QUE), and the chemotherapeutic drug paclitaxel (PTX) to reverse MDR by inhibiting energy metabolism through multiple pathways. Mechanistically, PAQNPs could effectively inhibit the OXPHOS and glycolytic pathways of A2780/Taxol cells by suppressing the activities of mitochondrial complex III and hexokinase II (HK II), respectively, ultimately decreasing intracellular ATP levels in tumor cells. Energy depletion can effectively inhibit cell proliferation and reduce P-gp activity, increasing the chemotherapeutic drug PTX accumulation in the cells. Moreover, intracellular reactive oxygen species (ROS) is increased with PTX accumulation and leads to chemotherapy-resistant cell apoptosis. Furthermore, PAQNPs significantly inhibited tumor growth in the A2780/Taxol tumor-bearing NCG mice model. Immunohistochemical (IHC) analysis of tumor tissues revealed that P-gp expression was suppressed, demonstrating that PAQNPs are effective in reversing MDR in tumors by inducing energy depletion. In addition, the safety study results, including blood biochemical indices, major organ weights, and H&E staining images, showed that PAQNPs have a favorable in vivo safety profile. In summary, the results suggest that the combined inhibition of the two energy pathways, OXPHOS and glycolysis, can enhance chemotherapy efficacy and reverse MDR in ovarian cancer.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Paclitaxel , Neoplasias Ovarianas/patologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
16.
Sci Rep ; 14(1): 7083, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528189

RESUMO

We aimed to identify the key potential insulin resistance (IR)-related genes and investigate their correlation with immune cell infiltration in type 2 diabetes (T2D). The GSE78721 dataset (68 diabetic patients and 62 controls) was downloaded from the Gene Expression Omnibus database and utilized for single-sample gene set enrichment analysis. IR-related genes were obtained from the Comparative Toxicology Genetics Database, and the final IR-differentially expressed genes (DEGs) were screened by intersecting with the DEGs obtained from the GSE78721 datasets. Functional enrichment analysis was performed, and the networks of the target gene with microRNA, transcription factor, and drug were constructed. Hub genes were identified based on a protein-protein interaction network. Least absolute shrinkage and selection operator regression and Random Forest and Boruta analysis were combined to screen diagnostic biomarkers in T2D, which were validated using the GSE76894 (19 diabetic patients and 84 controls) and GSE9006 (12 diabetic patients and 24 controls) datasets. Quantitative real-time polymerase chain reaction was performed to validate the biomarker expression in IR mice and control mice. In addition, infiltration of immune cells in T2D and their correlation with the identified markers were computed using CIBERSORT. We identified differential immune gene set regulatory T-cells in the GSE78721 dataset, and T2D samples were assigned into three clusters based on immune infiltration. A total of 2094 IR-DEGs were primarily enriched in response to endoplasmic reticulum stress. Importantly, HDAC9 and ARRDC4 were identified as markers of T2D and associated with different levels of immune cell infiltration. HDAC9 mRNA level were higher in the IR mice than in control mice, while ARRDC4 showed the opposite trend. In summary, we discovered potential vital biomarkers that contribute to immune cell infiltration associated with IR, which offers a new sight of immunotherapy for T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Histona Desacetilases , Resistência à Insulina , MicroRNAs , Animais , Humanos , Camundongos , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Imunoterapia , Insulina , Resistência à Insulina/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
17.
BMJ Open ; 14(3): e071821, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485471

RESUMO

OBJECTIVES: To develop an interpretable deep learning model of lupus nephritis (LN) relapse prediction based on dynamic multivariable time-series data. DESIGN: A single-centre, retrospective cohort study in China. SETTING: A Chinese central tertiary hospital. PARTICIPANTS: The cohort study consisted of 1694 LN patients who had been registered in the Nanjing Glomerulonephritis Registry at the National Clinical Research Center of Kidney Diseases, Jinling Hospital from January 1985 to December 2010. METHODS: We developed a deep learning algorithm to predict LN relapse that consists of 59 features, including demographic, clinical, immunological, pathological and therapeutic characteristics that were collected for baseline analysis. A total of 32 227 data points were collected by the sliding window method and randomly divided into training (80%), validation (10%) and testing sets (10%). We developed a deep learning algorithm-based interpretable multivariable long short-term memory model for LN relapse risk prediction considering censored time-series data based on a cohort of 1694 LN patients. A mixture attention mechanism was deployed to capture variable interactions at different time points for estimating the temporal importance of the variables. Model performance was assessed according to C-index (concordance index). RESULTS: The median follow-up time since remission was 4.1 (IQR, 1.7-6.7) years. The interpretable deep learning model based on dynamic multivariable time-series data achieved the best performance, with a C-index of 0.897, among models using only variables at the point of remission or time-variant variables. The importance of urinary protein, serum albumin and serum C3 showed time dependency in the model, that is, their contributions to the risk prediction increased over time. CONCLUSIONS: Deep learning algorithms can effectively learn through time-series data to develop a predictive model for LN relapse. The model provides accurate predictions of LN relapse for different renal disease stages, which could be used in clinical practice to guide physicians on the management of LN patients.


Assuntos
Aprendizado Profundo , Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/tratamento farmacológico , Estudos de Coortes , Estudos Retrospectivos , Recidiva
18.
J Cell Mol Med ; 28(7): e18204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506068

RESUMO

Podocyte apoptosis exerts a crucial role in the pathogenesis of DN. Recently, long noncoding RNAs (lncRNAs) have been gradually identified to be functional in a variety of different mechanisms associated with podocyte apoptosis. This study aimed to investigate whether lncRNA Glis2 could regulate podocyte apoptosis in DN and uncover the underlying mechanism. The apoptosis rate was detected by flow cytometry. Mitochondrial membrane potential (ΔΨM) was measured using JC-1 staining. Mitochondrial morphology was detected by MitoTracker Deep Red staining. Then, the histopathological and ultrastructure changes of renal tissues in diabetic mice were observed using periodic acid-Schiff (PAS) staining and transmission electron microscopy. We found that lncRNA Glis2 was significantly downregulated in high-glucose cultured podocytes and renal tissues of db/db mice. LncRNA Glis2 overexpression was found to alleviate podocyte mitochondrial dysfunction and apoptosis. The direct interaction between lncRNA Glis2 and miR-328-5p was confirmed by dual luciferase reporter assay. Furthermore, lncRNA Glis2 overexpression alleviated podocyte apoptosis in diabetic mice. Taken together, this study demonstrated that lncRNA Glis2, acting as a competing endogenous RNA (ceRNA) of miRNA-328-5p, regulated Sirt1-mediated mitochondrial dysfunction and podocyte apoptosis in DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Doenças Mitocondriais , Podócitos , RNA Longo não Codificante , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , RNA Longo não Codificante/genética , MicroRNAs/genética , Podócitos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Fatores de Transcrição , Apoptose/genética , Doenças Mitocondriais/patologia , Glucose
19.
Chemistry ; : e202304338, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538540

RESUMO

Glioma, the most common primary brain tumor, is highly invasive and grows rapidly. As such, the survival of glioma patients is relatively short, highlighting the vital importance of timely diagnosis and treatment of glioma. However, the blood brain barrier (BBB) and the non-targeting delivery systems of contrast agents and drugs greatly hinder the effective glioma imaging and therapy. Fortunately, in recent years, investigators have constructed various biomimetic delivery platforms utilizing the exceptional advantages of biomimetic nanocomposites, such as immune evasion, homologous targeting ability, and BBB penetrating ability, to achieve efficient and precise delivery of substances to glioma sites for improved diagnosis and treatment. In this concept, we present the application of these biomimetic nanocomposites in fluorescence imaging (FI), magnetic resonance imaging (MRI), and multi-modal imaging, as well as in chemotherapy, phototherapy, and combined therapy for glioma. Lastly, we provide our perspective on this research field.

20.
Asian J Pharm Sci ; 19(1): 100885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38434718

RESUMO

Amultifunctional liposomal polydopamine nanoparticle (MPM@Lipo) was designed in this study, to combine chemotherapy, photothermal therapy (PTT) and oxygen enrichment to clear hyperproliferating inflammatory cells and improve the hypoxic microenvironment for rheumatoid arthritis (RA) treatment. MPM@Lipo significantly scavenged intracellular reactive oxygen species and relieved joint hypoxia, thus contributing to the repolarization of M1 macrophages into M2 phenotype. Furthermore, MPM@Lipo could accumulate at inflammatory joints, inhibit the production of inflammatory factors, and protect cartilage in vivo, effectively alleviating RA progression in a rat adjuvant-induced arthritis model. Moreover, upon laser irradiation, MPM@Lipo can elevate the temperature to not only significantly obliterate excessively proliferating inflammatory cells but also accelerate the production of methotrexate and oxygen, resulting in excellent RA treatment effects. Overall, the use of synergistic chemotherapy/PTT/oxygen enrichment therapy to treat RA is a powerful potential strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...